
 

 

揺らぐ拡散係数を持つランジュバン方程式  
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【はじめに】近年、細胞内における生体分子の拡散において、平均２乗変位（MSD）
が劣線形に増大する“遅い拡散”が１分子測定実験により頻繁に観測され、注目が集

まっている。１分子測定では、１分子の軌道の時系列から MSD の長時間平均

（TAMSD）が計算されるが、MSD は劣線形に増大するだけでなく、分子毎にその一
般化拡散係数が１、２桁異なってくることがわかってきた。このような拡散係数の大

きな揺らぎの理論はまだできていない。我々は、拡散係数の揺らぎに注目し、からみ

あい高分子のモデルにおいて TAMSD の揺らぎの観測時間依存性（相対揺らぎ）をシ
ミュレーションにより解析した [1]。その結果、相対揺らぎがプラトーから通常減衰
（ -0.5 乗で減衰）へ遷移するクロスオーバー現象を発見し、さらに、からみあい高分
子の最長緩和時間とこのクロスオーバー時間が比例関係にあることを発見した。本研

究では、このクロスオーバー時間と最長緩和時間の関係を理論的に明らかにするため、

拡散係数が時間的に（ランダムに）揺らぐランジュバン方程式 [2]を考え、上で述べた
関係を理論的に示す。このランジュバン方程式は、からみあい高分子の可解モデルで

あるレプテーションモデルにおける高分子の重心の運動と密接な関係がある。  
 
【結果と考察】  
本研究で扱うランジュバン方程式は、	 	 	 	 	 	 	 	      である。ここで、    は  
位置、	 	 はホワイトガウシアンノイズであり、拡散係数      はそれとは独立な確率
過程とする。レプテーションモデルでは、拡散係数は末端間ベクトルと関係する。主

な結果として、TAMSD の相対標準偏差	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 は、
観測時間が短い領域ではプラトー、長い領域では通常の減衰を示すことを紹介する：  
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If the characteristic relaxation time of ψ1(t) and ψ2(t), τ , is much longer than ∆, Eq. (37)

can be further approximated:
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Eqs. (38) and (39) are the main result of this section. For the case of t ≫ τ , the RSD

behaves as Σ(t;∆) ∝ t−1/2, which corresponds to the Gaussian fluctuation. From Eq. (38),

we find that the t-dependence of the RSD is essentially determined only by ψ1(t), and is

independent of ψ2(t). Therefore the crossover time τc is related only to ψ1. From Eq. (39),

the crossover time τc is estimated as:

τc ≈
2

ψ1(0)

∫ ∞

0

dsψ1(s). (40)

For a single exponential type relaxation mode (ψ1(t) = ψ1(0)e−t/τ ), this crossover time

becomes:

τc ≈ 2τ. (41)

As expected, the crossover time is proportional to the relaxation time, although they are

different by the numerical factor 2. In general, the correlation function ψ1(t) cannot be

expressed as a single exponential relaxation mode but a sum of multiple exponential relax-

ation modes. Even in such a case, a similar relation between the relaxation time and the

crossover time holds, if we replace the relaxation time τ in Eq. (41) by the average relaxation

time for multiple relaxation modes. This result justifies the use of the crossover time as the

characteristic relaxation time for systems with time-dependent diffusivities, as long as ψ1(t)

reflects the characteristic relaxation at the long time scale. As shown in Appendix A, the

RF behaves in the similar way to the RSD. Thus we consider that the empirical relation
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ここで、	 	  は拡散係数の相関関数であり、τは	 	  の緩和時間である。この結果
をレプテーションモデルへ適用すると、クロスオーバー時間と緩和時間が比例関係に

あることを示すことができる。これは、[1]で得られた結果をよく説明している。また、
過冷却液体の動的不均一性を説明する簡単なモデルである２状態モデル（遅いモード

と速いモードを時間的に遷移するモデル）へ応用することにより、TAMSD の揺らぎ
から拡散係数の緩和時間を知ることができることも報告する。  
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If the force is applied, we need to add the term proportional to the force F (t) to the

Langevin equation. Then Eq. (8) is modified as

dr(t)

dt
= Λ(t) · F (t) +

√
2B(t) ·w(t), (14)

where Λ(t) is the time-dependent instantaneous mobility matrix. If we assume that the

fluctuation-dissipation relation of the second kind holds for the instantaneous mobility, we

have

Λ(t) =
1

kBT
D(t) =

1

kBT
B(t) ·BT(t). (15)

with kB and T being the Boltzmann constant and the absolute temperature, respectively.

Eqs. (14) and (15) will be useful to study a particle trapped in a potential or driven by an

external force.

Before we proceed to the detailed analysis, we show that our general model reduces to

well-known dynamics models for some special cases. We consider the case where the noise

coefficient matrix is given as follows:

B(t) =

√
3Deff

⟨p2⟩
p(t)p(t)

|p(t)| . (16)

If we consider a three-dimensional system (n = 3) and interpret p(t) as the end-to-end

vector and Deff as the center of mass diffusion coefficient DCM, Eq. (8) can be rewritten as

the following form, which is equivalent to Eq. (6):

dr(t)

dt
=

√
6Deff

⟨p2⟩ p(t)w
′(t). (17)

Here, w′(t) is the the one-dimensional white Gaussian noise defined by

w′(t) ≡ p(t)

|p(t)| ·w(t). (18)

The first and second order moments of w′(t) become

⟨w′(t)⟩ = 0, ⟨w′(t)w′(t′)⟩ = δ(t− t′). (19)

If the noise coefficient matrix is given as an isotropic form as

B(t) =
√

2D(t)1, (20)

Eq. (8) simply reduces to

dr(t)/dt =
√
2D(t)w(t). (21)

This can be interpreted as the two-state model for supercooled liquids or the trap model, if

it is combined with appropreate transition dynamics for D(t).
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realizations and/or particles) is widely used. If the system is non-ergodic and/or the time-

average is not taken for a sufficiently long time period, the TAMSD does not coincide to the

EAMSD. In such a case, the TAMSD can be interpreted as a stochastic variable. In some

stochastic models of anomalous diffusion, such a randomness is intrinsic [10–12]. In other

words, TAMSDs remain random even when the observation time t goes to infinity. Such an

intrinsic randomness of the TAMSDs will be related to large fluctuations of the TAMSDs

observed in single-particle-tracking experiments in living cells [5–7]. Thus it is important to

calculate the statistical quantities such as the average and standard deviation of the TAMSD.

The magnitude of the fluctuation of the TAMSD can be quantitatively characterized by the

relative fluctuation (RF) [13, 14] or the relative standard deviation (RSD) [10, 11, 15]:

R(t;∆) ≡ ⟨|δ2(∆; t)− ⟨δ2(∆; t)⟩|⟩
⟨δ2(∆; t)⟩

, (3)

Σ(t;∆) ≡
√
⟨[δ2(∆; t)− ⟨δ2(∆; t)⟩]2⟩/⟨δ2(∆; t)⟩. (4)

The RF and RSD behave in a similar way, and it is reported that these quantities can char-

acterize some dynamical properties of the system [13–15]. (In some literature, the squared

RSD is utilized as the ergodicity breaking parameter [10, 16, 17].) If the second moment

of δ2(∆; t) diverges, the RSD is not useful while the RF can be utilized to characterize the

fluctuation of the TAMSD [9].

In the recent work[14], the authors applied the RF analysis to the center of mass motion

of an entangled polymer[3]. In entangled polymer systems, the RF of the TAMSD shows

the crossover behavior:

R(t;∆) ∝

⎧
⎪⎨

⎪⎩

t−β (t ! τ ′c),

t−0.5 (t " τ ′c).
(5)

Here β < 0.5 is the constant and τ ′c is the characteristic crossover time. The crossover time

τ ′c behaves in the same way as the longest relaxation time (the disengagement time) τd. This

means that the crossover time τ ′c characterizes the long time relaxation in entangled polymer

systems. (It would be natural to expect that the RSD of the TAMSD also shows the similar

crossover behavior, although the data are not shown in the previous work.) However, the

reason why τ ′c characterizes the long time relaxation behavior has not been theoretically

clarified yet.

One possible explanation is that the crossover originates from the coupling between the

3
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